Probability Applications in
Quantitative Trading



Review on Random Variables

Definition and Role

Random variables represent numerical outcomes of stochastic processes key to
probability theory.

Modeling Financial Data

Random variables model uncertain financial phenomena like asset returns and
price movements.

Example - Stock daily returns can be modeled as normally distributed variables
with mean and variance.

- Random Variables: X ~ N(u, ¢2)
- Expectation: E[X] = [ x f(x) dx
- Variance: Var(X) = E[(X - E[X])?]



PROBABILITY CONCEPTS



Martingales in Finance

Martingale Definition

A martingale is a stochastic process where the expected future value equals the current value, indicating no drift,

Financial Application

Martingales model asset prices under no arbitrage, forming a foundation for derivative pricing and risk-neutral
valuation.

Market Efficiency and Fairness

Martingale properties help ensure market efficiency and fair betting systems by aligning expected payoffs with
current prices.




Stochastic Calculus and lto's Lemma

Stochastic Calculus Basics

Stochastic calculus generalizes calculus to functions influenced by random processes like
Brownian motion.

Ito's Lemma Formula

Ito's Lemma provides a differential rule for functions of stochastic variables involving drift and
diffusion terms.

Applications in Finance

Ito's Lemma underpins the Black-Scholes equation and models derivative pricing and hedging
strategies.

Visualizing Stochastic Paths

Visuals include stochastic paths with tangent approximations showing randomness impact on
functions.



Modeling Asset Prices with SDEs

Stochastic Differential Equations

SDEs model asset price changes continuously with drift and volatility
components.

Geometric Brownian Motion Model

GBM models asset prices combining deterministic trend and stochastic
fluctuations.

Applications in Finance

GBM underpins Black-Scholes option pricing and quantitative trading
strategies.

Visualizing Price Paths

Simulated GBM paths help traders understand price behavior and volatility
impact.



MATHEMATICAL PROOFS AND
INEQUALITIES



PROOF

Markov’s Inequality. Let X be a non-negative random variable and let a > 0.

Then .
Pr(X >a) < | ]

a

Step 1: Apply Markov to a squared deviation. Let Y be any random
variable with mean pu = E[Y]. For any € > 0,

Pr (|Y — 1 > 5) =Pr((Y - p)? > Ez).
Since (Y — p)? is non-negative, we can apply Markov’s inequality:

E[(Y — pu)?]

Pr((Y —p)?>e*) <

Step 2: Recognize variance. Recall that E[(Y — p)?] = Var(Y). Thus,

Var(Y)

Pr(lY —pul>¢) < )
Chebyshev’s Inequality. We have derived the classic form:

Var(Y)
g2

Pr(|Y—p,|25) <

Chebyshev's Inequality -
Risk Managment

ChebysheV's Inequality Concept

This inequality bounds the probability a variable deviates
from its mean by k standard deviations without
distribution assumptions.

Mathematical Derivation

The proof uses Markov's Inequality applied to squared
deviation, linking variance to probability bounds.

Applications in Trading

Used in quantitative trading to estimate extreme event
probabilities and to set risk limits and strategies.



Derivation of Hoeffding’s Inequality
Markov’s Inequality. For any non-negative random variable X and a > 0,
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Pr(X >

o(X > 0) < 20
Step 1: Exponential Markov bound. Let S, = >, (X; — E[X;]). For

any h > 0 and ¢ > 0,

E[Ehsn]

Pr(S, >t)= Pr(ehs“ > em) < it

Step 2: Independence and factorization. If X,,..., X, are indepen-
dent,

n
E[ hSn] _ E h(X;—E[X,]) .
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Step 3: Hoeffding’s Lemma. If a random variable Y satisfies Y € [a,b]
and E[Y] = 0, then
h2(b— a,)2)

hY
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Step 4: Apply Hoeffding’s Lemma to each term. For each X;,

2 2
E[eh(x;—E[X‘-])} < exp(h (bl‘;m) ) _

Thus,
Ele S "] < exp —h E (b — ai)
8 i=1 ' ' .

Step 5: Combine bounds. So

hz n
Pr(S, > t) <exp (E E(bi R ht) .

i=1
Step 6: Optimize over h. Choosing

4t

h==—F—
i (bi —ai)?

minimizes the exponent, yielding

From Markov to
Hoeffding Inequality

Application in Quantitative Trading

- Provides an upper bound on the probability that
the sum of bounded independent random
variables deviate from its expected value by a

threshold o
Hoeffding Inequality gives us .
probability of incorrect | - @ '
classification given n 1" 0
samples
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Two-sided bound. By symmetry, m = 321  Sample Size
Etrain(h) = 0.7500 |Training trror
242 Etm.c((h)) Z 0,6302 |mwemer Etrain(h) = 0.6449  [Treining frrer
Pr(|S. > t) < 2exp(772n 0 )2). Etrue(h) = 0.6302 |rruegmor
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Hoeffding’s Inequality. We conclude:

Pr(} Y (X — BIX])| zt) S?exp(—#%_a.)z).
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m = 100 | Sample size
|€ = 0.1 | Approximately close |

]P(IEtrain(h) - Etrue(h)| > E) S 2 e}(:F)_ZIrls2




